
TIPI PROTOCOL - V1.0

1. Overview
1.1. Tipi is a simple but powerful ASCII text based protocol for controlling and

monitoring a range of Linea Research products from any number of third party
control panels or software applications over Ethernet (TCP/IP) or Serial
(RS232/RS485)

1.2. In this document, items in grey thus are not yet supported.
2. Physical layer

2.1. Tipi would typically be transported using one of the following:
2.1.1. An EIA-RS232 interface running NRZ, LSB first, 1 start, 8 data, 1 stop, no

parity, no flow control at 38,400 baud.
2.1.2. An RS485 interface interface running NRZ, LSB first, 1 start, 8 data, 1

stop, no parity, no flow control at 38,400 baud. Since RS485 is a shared
bus, there has to be mechanisms to control access to the bus to avoid
contention. It is the responsibility of the master to coordinate access to
the bus. This would be done for example by allowing time for a device to
respond when the Controller sends a Get. It also means that
often-requested parameters such as metering should not use
‘Subscriptions’. These would instead be gathered via periodically sent
Get commands. It also means that a wildcard Get could not be issued
since this will almost certainly cause bus contention.

2.1.3. An Ethernet Interface (10/100/1G) using the TCP/IP protocol, port 51456
3. General frame format

3.1. 8-bit ASCII text strings are used throughout
3.2. The start of a message is delimited by a $ character
3.3. Fields are separated by one or more space characters (although no space is

required after the Start delimiter ($) or before the End delimiter (<CR>))
3.4. Spaces may not be used in name fields. We suggest the use of underscore

instead (_).
3.5. Numbers are expressed in decimal units
3.6. The case of alpha letters is not important (although Upper Case Commands (e.g.

SET) and CamelCase Method names (e.g. Out1/Gain) will be used in all
responses from a device)

3.7. The general format is SD C M VE - where:

3.7.1. S is the Start character = $
3.7.2. D is the (optional) Device Address (either the DeviceName. This is

normally only required when using a multidrop RS485 connection. If the
address is implicit (in the case of an IP or RS232 connection for
example), then this field may be omitted (so the string then starts with a
Command. An absence of this field (i.e. when the frame starts with a
Command) indicates ‘any’ (either the device is implicitly nominated by an
IP address, or this is a broadcast). The address must always preceded
with the ‘#’ delimiter. (See Addressing)

3.7.3. C is the Command type (GEt, SEt etc). A minimum of two characters is
required; others may be omitted (e.g. SE, ge). The full command is
returned by devices in any responses.

3.7.4. M is the Method name (such as Out2/Eq3Freq), describing which
parameter is to be acted upon. The MethodName is sometimes made up
of concatenated sub-fields separated by a forward slash (“/”). These fields
are usually:

3.7.4.1. The Path (the input/output name/number) e.g. “Out1”. Valid path
names are or the form: “In1”, “InA”, “Out1”

3.7.4.2. The Parameter name - e.g. “Eq1Freq”.
3.7.4.3. The full MethodName in this example would be “Out1/EqFreq”.
3.7.4.4. Methods which are not associated with particular input/output

channels do not have a Path name or the forward slash(/), so are
simply of the form “Snapshot”. A typical command string then
might be: $SET Snapshot 8<CR>

3.7.5. V is the value (such as “-3.8dB”). The units of measure are merely for
convenience of reading, so may be omitted (“-3.8” in this example).

3.7.6. E is the end delimiter: Carriage Return (<CR>) (ASCII 13, 0x0D Hex).
Note that an LF or NUL character may also be appended in addition to
<CR>.

3.8. Any characters outside of a S…E frame are ignored
4. Addressing

4.1. Since Ethernet and RS232 connections will necessarily be discrete 1:1
connections, it will not usually be necessary to specify addressing in the script.
However, a Destination device address may be specified. This might be useful
for example in multi-drop RS485 connections.

4.2. A destination address is specified as the DeviceName preceded by #
4.3. If the string after the start character begins with a command (rather than ‘#’), then

the address is considered to be wildcard (broadcast). This only has relevance for
multidrop RS485 since RS232 and TCP/IP connections have implicit addressing.

4.4. Example: $#LobbyAmp SET Out2/Gain 3.5dB<CR>
4.5. Note that spaces in device names are not permitted. Use underscore instead e.g.

“Lobby_Amp”

4.6. In an RS485 network, the user will need to ensure that there are no duplicate
DeviceNames on the network.

5. Commands
5.1. A command tells the connected device what general action is to be performed
5.2. Defined commands are:

5.2.1. SET This tells a receiving device that it should set the value of the
specified parameter to a particular value.

5.2.1.1. Example: $SET Out2/Gain 3.5dB<CR>
5.2.2. GET This requests the value of the specified parameter. The receiving

device will return a “NOTIFY” command, appended with the value of that
parameter

5.2.2.1. Example: $GET Out8/Eq2Freq<CR>
5.2.2.2. Response: $NOTIFY Out8Eq2Freq 330Hz<CR>
5.2.2.3. Note that since parameter values are quantised in the device, the

value returned in any subsequent GET response may not be
exactly the same as the value in a SET command. For example,
$SET Out1/Gain -22.415dB<CR> might set the parameter
value to -22.42dB. Similarly, if a SET command attempts to set a
parameter to a value outside of its permitted range, a subsequent
GET command will return the nearest permitted value.

5.2.3. NOTIFY Used to respond to a GET
5.2.4. VERSION This requests the version of the scripting protocol, which may

be enhanced from time to time. There are no further parameters for this
command.

5.2.4.1. Example: $VERSION<CR>
5.2.4.2. The response is similar to a GET; i.e. $NOTIFY VERSION

1.28<CR>

5.2.5. ERROR. This is returned when the message was erroneous. Error
responses will return the original message, prepended with ERROR and
appended with a brief error description and an error number. Examples of
error responses are:

5.2.5.1. A message is badly formed: $ERROR <original message>
BadCommand 06<CR>

5.2.5.2. The Method was not supported in the device: $ERROR
<original message> UnsupportedMethod 09<CR>

5.2.6. NOP This is optionally used for an Ethernet connection to keep the
connection open. It instructs the receiving device to perform No Operation
- the command is ignored but the Ethernet message restarts the
connection timeout. For TIPI/IP the timeout is 120s so NOPs should be
sent more frequently than that.

5.2.6.1. Example: $NOP<CR>

6. Responses
6.1. There are several types of response:

6.1.1. ERROR (when the message is erroneous)
6.1.2. NOTIFY (when a device sends back a parameter value in response to a

Get: $NOTIFY Out2/Eq3Gain 2.6dB<CR>
7. MethodNames

7.1. For each type of device, a list of compatible MethodNames is published. Please
refer to the documentation for the specific device.

8. Security
8.1. Not all the published MethodNames will be accessible; some of these might have

been ‘locked’ by the vendor.
9. Parameter Values

9.1. Parameter Values are stated in ‘natural’ units of measure (e.g. Hz, dB etc) in
decimal format with any desired precision (although this will be truncated to the
precision the device is capable of interpreting).

9.2. Although not necessary, for convenience, a suffix may be added after the value
to indicate units of measure (without a space). Examples are:

9.2.1. Hz //Freq type (e.g. 650.3Hz)
9.2.2. Oct //Bandwidth type (e.g. 0.32Oct)
9.2.3. dB //dB type (e.g. -3.4dB)
9.2.4. ms //Time type (e.g. 120.3ms)
9.2.5. X //multiplier type (e.g. 3.2X)
9.2.6. :1 //Ratio type (e.g. 4:1)
9.2.7. W //Power type (e.g. 452.3W)
9.2.8. R //resistance type (Ohms) (e.g. 4.2R)
9.2.9. Min //minutes type (e.g. 122.5Min)

9.2.10. C //temperature type (e.g. 34.5C)
9.2.11. V //voltage type (e.g. 233.6V)
9.2.12. A //current type (e.g. 72.3A)
9.2.13. % //percent type (e.g. 52.5%)
9.2.14. blob //Binary Large OBject (blob) type

9.3. We suggest no suffix for Integer, Select or Boolean values.
9.4. Boolean values are represented using one of the two values: Yes or No (e.g.

Out1/Mute Yes)
9.5. The values of Select types (such as “24dB Bessel”) are conveyed using index

numbers which we publish.
9.6. Multipliers etc (such as k for 1000) are NOT supported. 15kHz must be scripted

as 15000Hz.
10. Script Examples

10.1. $SET Snapshot 5<CR> – Recall Snapshot 5

10.2. $SET Out1/Mute yes<CR> – Mute channel 1
10.3. $SET InA/Gain -3.2dB<CR> – Set the gain of input A to -3.2dB

