

TIPI PROTOCOL - V1.03

1. Overview
1.1. Tipi is a simple but powerful ASCII text based protocol for controlling and

monitoring a range of Linea Research products from any number of third party
control panels or software applications over Ethernet (TCP/IP) or Serial
(RS232/RS485)

2. Physical layer
2.1. Tipi would typically be transported using one of the following:

2.1.1. An EIA-RS232 interface running NRZ, LSB first, 1 start, 8 data, 1 stop, no
parity, no flow control, 38,400 baud.

2.1.2. An RS485 interface interface running NRZ, LSB first, 1 start, 8 data, 1
stop, no parity, no flow control, 38,400 baud . Since RS485 is a shared
bus, there has to be mechanisms to control access to the bus to avoid
contention. It is the responsibility of the master to coordinate access to
the bus. This would be done for example by allowing time for a device to
respond when the Controller sends a Get. It also means that
often-requested parameters such as metering should not use
‘Subscriptions’. These would instead be gathered via periodically sent
Get commands. It also means that a wildcard Get could not be issued
since this will almost certainly cause bus contention.

2.1.3. An Ethernet Interface (10/100/1G) using the TCP/IP protocol, port 51456
3. General frame format

3.1. 8-bit ASCII text strings are used throughout
3.2. The start of a message is delimited by a $ character
3.3. Fields are separated by one or more space characters (although no space is

required after the Start delimiter ($) or before the End delimiter (\r), (sometimes
denoted as < CR >)

3.4. Spaces may not be used in name fields. We suggest the use of underscore
instead (_).

3.5. Numbers are expressed in decimal units
3.6. The case of alpha letters is not important (although Upper Case Commands (e.g.

SET) and CamelCase Method names (e.g. Out1/Gain) will be used in all
responses from a device). Similarly, Boolean values will be returned in lower
case (e.g. ‘yes’, ‘no’)

3.7. The general format is SD C M VE - where:
3.7.1. S is the Start character = $

3.7.2. C is the Command type (GET, SET, NOTIFY etc). A minimum of three
characters is required; others may be omitted (e.g. NOT rather than
NOTIFY). The full command is returned by devices in any responses.

3.7.3. M is the Method name (such as Out2/Eq3Freq), describing which
parameter is to be acted upon. The MethodName is sometimes made up
of concatenated sub-fields separated by a forward slash (“/”). These fields
are usually:

3.7.3.1. The Path (the input/output name/number) e.g. “Out1”. Valid path
names are or the form: “In1”, “InA”, “Out1”

3.7.3.2. The Parameter name - e.g. “Eq1Freq”.
3.7.3.3. The full MethodName in this example would be “Out1/EqFreq”.
3.7.3.4. Methods which are not associated with particular input/output

channels do not have a Path name or the forward slash(/), so are
simply of the form “Snapshot”. A typical command string then
might be: $SET Snapshot 8<CR>

3.7.4. V is the value (such as “-3.8dB”). The units of measure are merely for
convenience of reading, so may be omitted (“-3.8” in this example).

3.7.5. E is the end delimiter: Carriage Return (< CR >) (‘\r’, ASCII 13, 0x0D Hex).
3.8. Any characters outside of a S…E frame are ignored

4. Commands
4.1. A command tells the connected device what general action is to be performed
4.2. Defined commands are:

4.2.1. SET This tells a receiving device that it should set the value of the
specified parameter to a particular value.

4.2.1.1. Example: $SET Out2/Gain 3.5dB<CR>
4.2.2. GET This requests the value of the specified parameter. The receiving

device will return a “ NOTIFY ” command, appended with the value of that
parameter

4.2.2.1. Example: $GET Out8/Eq2Freq<CR>
4.2.2.2. Response: $NOTIFY Out8Eq2Freq 330Hz<CR>
4.2.2.3. Note that since parameter values are quantised in the device, the

value returned in any subsequent GET response may not be
exactly the same as the value in a SET command. For example,
$SET Out1/Gain -22.415dB<CR> might set the parameter
value to -22.42dB. Similarly, if a SET command attempts to set a
parameter to a value outside of its permitted range, a subsequent
GET command will return the nearest permitted value.

4.2.3. NOTIFY Used to respond to a GET
Example: $NOTIFY Out8Eq2Freq 330Hz<CR>

4.2.3.1. Note that since parameter values are quantised in the device, the
value returned in any subsequent GET response may not be
exactly the same as the value in a SET command. For example,

$SET Out1/Gain -22.415dB<CR> might set the parameter
value to -22.42dB. Similarly, if a SET command attempts to set a
parameter to a value outside of its permitted range, a subsequent
GET command will return the nearest permitted value.

4.2.4. ERROR This is returned when the message was erroneous. Error
responses will return the original message, prepended with ERROR and
appended with a brief error description and an error number. Examples of
error responses are:

4.2.4.1. A message is badly formed: $ERROR <original message>
BadCommand 06<CR>

4.2.4.2. The Method was not supported in the device: $ERROR
<original message> UnsupportedMethod 09<CR>

4.2.5. NOP This is optionally used for an Ethernet connection to keep the
connection open. It instructs the receiving device to perform No Operation
- the command is ignored but the Ethernet message restarts the
connection timeout. For TIPI/IP the timeout is 120s so NOPs should be
sent more frequently than that.

4.2.5.1. Example: $NOP<CR>
5. Responses

5.1. There are several types of response:
5.1.1. ERROR (when the message is erroneous)
5.1.2. NOTIFY (when a device sends back a parameter value in response to a

Get: $NOTIFY Out2/Eq3Gain 2.6dB<CR>
6. MethodNames

6.1. For each type of device, a list of compatible MethodNames is published. Please
refer to the documentation for the specific device.

7. Security
7.1. Not all the published MethodNames will be accessible; some of these might have

been ‘locked’ by the vendor.
8. Parameter Values

8.1. Parameter Values are stated in ‘natural’ units of measure (e.g. Hz, dB etc) in
decimal format with any desired precision (although this will be truncated to the
precision the device is capable of interpreting).

8.2. Although not necessary, for convenience, a suffix may be added after the value
to indicate units of measure (without a space). Examples are:

8.2.1. Hz //Freq type (e.g. 650.3Hz)
8.2.2. Oct //Bandwidth type (e.g. 0.32Oct)
8.2.3. dB //dB type (e.g. -3.4dB)
8.2.4. ms //Time type (e.g. 120.3ms)
8.2.5. X //multiplier type (e.g. 3.2X)
8.2.6. :1 //Ratio type (e.g. 4:1)
8.2.7. W //Power type (e.g. 452.3W)

8.2.8. R //resistance type (Ohms) (e.g. 4.2R)
8.2.9. Min //minutes type (e.g. 122.5Min)

8.2.10. C //temperature type (e.g. 34.5C)
8.2.11. V //voltage type (e.g. 233.6V)
8.2.12. A //current type (e.g. 72.3A)
8.2.13. % //percent type (e.g. 52.5%)

8.3. We suggest no suffix for Integer, Select or Boolean values.
8.4. Boolean values are represented using one of the two values: yes or no (e.g.

Out1/Mute yes)
8.5. The values of Select types (such as “24dB Bessel”) are conveyed using index

numbers which we publish.
8.6. Multipliers etc (such as k for 1000) are NOT supported. 15kHz must be scripted

as 15000Hz.
9. Multiple Substrings

9.1. It is sometimes useful, particularly with slower communications media, to convey
several commands in one string, e.g:
$SET Out1/Mute yes $SET Out2/Mute yes $SET Out3/Mute
yes $SET Out4/Mute yes<CR>

9.2. Most devices should support this, although there will sometimes be a limit to the
maximum number of characters in such a string. A limit of 255 characters is not
unusual.

10. Script Examples
10.1. $SET Snapshot 5<CR> – Recall Snapshot 5
10.2. $SET Out1/Mute yes<CR> – Mute channel 1
10.3. $SET InA/Gain -3.2dB<CR> – Set the gain of input A to -3.2dB

