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Overview  
In this paper, we consider the various active crossover 
filter types that are in general use and compare the 
properties of these which are relevant to professional 
audio. We also look at a new crossover filter type and 
consider how this compares with the more traditional 
types. 
 
Why do we need crossover filtering?  
Professional loudspeaker systems invariably require two 
or more drivers with differing properties to enable the 
system to cover the wide audio frequency range 
effectively. Low frequencies require large volumes of air 
to be moved, requiring diaphragms with a large surface 
area. Such large diaphragms would be unsuitable for 
high frequencies because the large mass of the 
diaphragm could not be efficiently accelerated to the 
required velocities. It is clear then that we need to use 
drivers with different properties in combination to cover 
the frequency range, and to split the audio signal into 
bands appropriate for each driver, using a filter bank. In 
its simplest form, this filtering would comprise a 
high-pass filter for the high frequency driver and a 
low-pass filter for the low frequency driver. This is our 
crossover filter bank (or crossover network, or just 
crossover). 
 
Common Requirements  
When choosing an appropriate crossover filter type, 
there are several factors to be considered. 
 
Magnitude response 
Commonly referred to as "frequency response", this is a 
measure of to what degree the combined acoustic 
response of the system (assuming ideal drivers) remains 
at a constant level with respect to changing frequency. 
We would ideally like there to be no variation, but small 
deviations can usually be tolerated, particularly if other 
more desirable properties can be attained. Although 
perhaps the most obvious parameter, it is not 
necessarily the most important. It is after all the most 
readily corrected using equalisation on the 'input' to the 
system (or alternatively identical equalisation applied to 
each of the outputs from the crossover). However, one 
needs to be aware that applying such equalisation will 
have an effect on the Phase Response. Figure 1 shows 
the Magnitude Response of a well behaved crossover 
filter pair. 
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Fig.1 - Well behaved Magnitude Response
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Phase response 
This is a measure of how much the phase shift suffered 
by a signal passing from input to the summed acoustic 
output (again assuming ideal drivers) varies with 
changing frequency. The group delay is a parameter 
derived from phase response which describes how 
different frequencies are delayed. Since the group delay 
is proportional to the gradient of the phase response 
curve, it follows that a linear phase response produces a 
flat group delay, meaning that all frequencies are 
delayed by the same amount. We would therefore like 
the phase response to be as linear as possible. 
However, lack of phase linearity is not necessarily 
audible. 
 
Polar response 
In most loudspeaker systems, the drivers are not 
normally in the same vertical and horizontal position (in 
other words they are not coincident), the exception being 
the Dual Concentric type. Assuming the drivers are 
separated in the vertical place, then it is clear that the 
distance between the listener and each driver can only 
be the same in one position. If the listener is above or 
below the centreline of the driver pair, then there will be 
a difference in distance, and therefore a difference in 
delay which the signal arriving at the listener from the 
drivers will suffer. These delay differences will cause 
attenuation, and ultimately cancellation at certain 
frequencies. On the centreline however will be the main 
lobe where there is no such attenuation. Any differential 
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phase shift between crossover filter bands will cause this 
main lobe of the acoustic beam from the loudspeaker 
system to tilt. If such phase shift varies with frequency, 
this tilting will be frequency dependant, resulting in 
colouration of the sound which will be strongly 
dependant on the listening position. The ideal filter bank 
will therefore maintain zero degrees phase difference 
between adjacent outputs across the crossover region, 
and ideally at all frequencies.  
 
A Polar Response plot is essentially the magnitude 
response at different observation angles. The Polar 
Response is often referred to as the Dispersion Pattern, 
which can be different between the vertical plane and 
the horizontal plane for a given system. Here, we are 
interested in the vertical dispersion. Figure 2 shows the 
Polar Response of a system with vertically separated 
drivers, using a crossover filter pair in which the phase 
response is identical. This is plotted at the crossover 
frequency with driver separation equal to the wavelength 
of the crossover frequency. The scale lines are at 10 
degree and 10dB intervals. It does not take individual 
driver directionality into account. In this case, we can 
see that the centre of the main lobe is at 0dB at all 
frequencies. We have plotted the Polar Response at 
three different frequencies. Note that the cancellation 
that is evident on the 1kHz plot has nothing to do with 
crossover filters, and would indeed be the same if the 
filters were taken out. This is purely a function of the 
dissimilar distance between the drivers and the 
observer, which will clearly change significantly for 
differing distances between drivers. 
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Fig.2 - Well behaved Polar Response

 

Separation/Band-Stop effectiveness  
This is a measure of how effectively a filter output 
attenuates frequencies which are not intended for its 
driver. There are two issues: The rate at which the 
attenuation increases as the frequency gets further away 
from the intended band edge, and the ultimate 

attenuation. The latter is rarely an issue, but the rate of 
attenuation (often referred to as the cut-off slope, or 
cut-off rate) is usually seen as an important 
consideration. Driver design, like many aspects of 
engineering, involve many carefully balanced design 
decisions. Problems such as cone break-up and 
narrowing of the acoustic beam at high frequencies 
present the designer with challenges, while 
over-excursion distortion or damage can become an 
issue at low frequencies, particularly below the effective 
loading frequency of horn loaded drivers. More effective 
stop-band attenuation in the crossover filters will allow 
the driver to be better protected from the problematic 
frequencies. 
 
Frequently, some of these requirements are mutually 
exclusive, forcing designers to choose the best 
compromise. 
 
Active or Passive  
A crossover filter bank (network) can of course be 
implemented with purely passive components. In 
professional high-power systems which employ high 
voltages and high currents, the size and cost of the 
passive components can become prohibitive, and can 
lead to distortion, losses and degradation of the damping 
factor. These problems tend to be exacerbated when 
high filter orders are required.  
It is often desirable instead to employ an active 
crossover filter bank, where the band-splitting is done 
before the amplification, requiring amplification to be 
provided for each frequency band (conceptually on each 
driver). Such systems are sometimes referred to as 
"Bi-Amping" (for two-way active crossovers), or 
"Tri-Amping" (for three-way active crossovers). Such 
systems also benefit from the ability to match the power 
rating of the amplifier to the power requirements of a 
driver; lower frequency drivers usually requiring an 
amplifier with a higher power rating than high frequency 
drivers.  Furthermore in such a system, one crossover 
filter bank might be delivering a driver signal to several 
amplifiers, thus requiring fewer crossovers. 
Sometimes, passive and active crossover filters are 
used together in different parts of a multi-driver 
loudspeaker system, the passive filters being used on 
the highest frequency crossover, where voltages and 
currents are lower. 
 
Only active crossover filters will be considered in any 
detail in this paper, although much of the discussion 
applies to both active and passive implementations. 
 
Digital Or Analogue  
It is a commonly held misconception that digital 
implementation of filters in Digital Signal Processors 
(DSPs) behave in a fundamentally different way to their 
analogue counterparts. In fact, if a digital filter is 
designed properly to imitate an analogue filter design, 
then it will duplicate the magnitude, phase and group 
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delay characteristics perfectly; there will be no 
difference.   
Digital filters can however start to depart from their 
analogue cousins when the filter frequency is set at very 
high values - particularly when this frequency 
approaches half the sample rate. Towards this region, 
the magnitude response and phase response of the filter 
will fail to perfectly match the analogue filter. There are 
various ways of mitigating this problem, the most 
effective being to simply use a high sample rate. A 
96kHz sample rate almost completely eliminates the 
problem. 
Of course, the digital version will be superior in terms of 
accuracy, and in terms of consistency from one instance 
of a product to another because it does not suffer the 
inconsistencies of component value tolerance that will 
plague the analogue filter. This inconsistency can often 
be experienced as shifts in the stereo image, where 
component value differences between the channels can 
cause small, but acoustically significant phase 
differences. 
 
Figure 3 shows the magnitude responses of three 
different filter designs; a digital filter at 48kHz sample 
rate, a digital filter at 96kHz sample rate, and an 
analogue filter - all designed for a 4th order 
(24dB/octave) Linkwitz-Riley low-pass function with a 
crossover frequency of 10kHz . Even at this high filter 
frequency, one can see that the digital filters remain 
quite faithful to their analogue counterpart, particularly 
for the 96kHz design. At lower filter frequencies, the 
differences become very trivial. Interestingly, these 
minor departures in phase and magnitude for the digital 
filter are usually duplicated in the corresponding 
high-pass filter, resulting in the same summed and 
inter-band characteristics as an analogue design. We 
compare the phase responses in Figure 4. 
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Digital Filter Classes  
When implementing filters digitally, there are two primary 
classes of digital filter which can be used: Infinite 
Impulse Response (IIR), and Finite Impulse Response 
(FIR).  
IIR 
The IIR filer class is often used in digital crossover 
filtering because this is not only efficient in terms of DSP 
resource, but is also perfectly suited to reproducing the 
characteristics of tried and trusted analogue filter 
designs. IIR filters, just like their analogue equivalents 
are almost without exception Minimum Phase. This 
means that the phase shift suffered by a signal passing 
through the filter will not necessarily be linearly related to 
the frequency of that signal; rather, the phase shift is the 
minimum amount that is required to produce the filtering 
action at a given frequency, and will thus vary with 
frequency. 
FIR 
A filter design using an FIR would not normally be based 
on an analogue filter 'prototype', but would instead 
implement a filter which could not easily be implemented 
by analogue means, or indeed not exist in the natural 
world at all. The impulse response of an FIR is finite 
because it reconstructs the required impulse response 
by using a set of delay taps from which a weighted sum 
is produced. There can only be a finite number of taps, 
so the length of the impulse response is similarly finite. If 
an FIR filter is designed to have an impulse response 
which is symmetrical either side of the impulse peak, it 
will have a Linear Phase characteristic, that is where the 
amount by which the signal is phase shifted through the 
filter is linearly related to the signal frequency, which 
results in all frequencies being delayed through the filter 
by an equal amount. It must be stressed that the terms 
"Linear Phase" and "FIR" are not synonymous; An FIR 
filter can easily be designed to produce a non-linear 
phase response, and there are also other ways of 
producing a linear phase response without using an FIR 
filter, as we shall see later in this paper. 
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Whilst this is a worthwhile characteristic to strive for, one 
has to understand the ramifications of achieving Linear 
Phase using an FIR filter. 
In order to provide any filtering action, it is clear that a 
filter cannot 'know' how much to attenuate a signal until it 
has 'acquired' enough of its waveform to determine what 
the frequency is. All filters will thus delay the signal by an 
amount which is related to the wavelength of the signal. 
Generally speaking, a Minimum Phase filter will delay 
the low frequencies more than the high frequencies, thus 
blurring the arrival times of different frequencies. 
To achieve Linear Phase operation, this delay does not 
depend on the frequency of the signal; instead it is a 
fixed constant. A Linear Phase filter is effectively 
'padding out' the delay on the high frequencies to that 
required to be able to provide the necessary filtering 
action on the low frequencies. 
So, a Linear Phase filter will introduce a delay, as 
required by the laws of physics. There is thus an 
inescapable relationship between the amount of 
low-frequency filtering detail attainable, and the 
propagation delay, which may be unacceptable in some 
live sound situations.  
Of course, one has to put this delay in context. The 
distance of the loudspeaker from the listener might be 
several tens of feet (and thus introduce several tens of 
milliseconds of delay), so a few added milliseconds in 
the filters may be of little consequence. 
LIR 
The Linear Impulse Resonse (LIR) filter [10] is a 
relatively new technology which was developed to 
achieve Linear Phase operation with the very lowest 
latency delay possible. LIR crossover filters will be 
explored later in this paper. 
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Secondly, depending on how the FIR is designed, it can 
also exhibit a phenomenon known as 'pre-echo' which 
can be audible on percussive sounds, resulting in 
blurring which listeners can find very unnatural. The 
impulse response of an FIR showing excessive pre-echo 
is shown in Figure 7. There are decaying ripples either 
side of the main impulse peak at 11ms, which are a 
natural consequence of filtering, and are discussed in 
the next section. At about 6ms before and 6ms after the 
main impulse however, one can see a pre-echo and a 
post-echo. The post-echo will most likely be masked by 
the ear, but the pre-echo will almost certainly be audible. 
This is a particularly extreme example, but is an example 
of what can go wrong when an FIR is not designed with 
proper attention to detail. 
 
Linear Phase filters most definitely have their place, but 
before using an FIR for this purpose, one has to 
understand their potential problems. 
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Brick-Wall Filtering 
We will see later in this paper that some of the problems 
with crossovers filters are associated with the crossover 
region; that is the range of frequencies where both 
bands are contributing to the summed output. This, 
together with the fact that the loudspeaker designer 
might well wish the frequency range presented to each 
driver to be tightly constrained, might lead one to 
assume that the steeper the cut-off slope the better. In 
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fact, why not have an infinitely fast slope so that there is 
no crossover region, and absolutely no signal outside 
the prescribed frequency range for a driver? In other 
words, a Brick-Wall filter. 
Very high order filters (see the section on Filter Order) 
are capable of very high attenuation slopes, but will 
usually, with analogue and IIR digital filters, be 
associated with severe phase problems as we will see 
later. FIR digital filters of sufficient order (length) can 
conceivably achieve close to Brick-Wall operation, but 
there is of course a down-side.. 
When we filter a signal and remove a part of the 
spectrum, we are removing some of the Fourier series 
(the infinitely large number of sine waves of differing 
frequencies that would be needed to represent a 
complex signal). A low-pass filter at 1kHz is removing 
the Fourier components above 1kHz, and a high-pass 
would remove the Fourier components below 1kHz. This 
truncation of the Fourier series gives rise to a ripple in 
the impulse response due to the Gibbs phenomenon [1]. 
This is not the result of any imperfection in the filter, but 
an inescapable result of physics. It is easy to see why 
when you consider that, to adequately represent a 
square wave using a series of sine waves, there must be 
many high-frequency sine waves adding together to 
produce the vertical sides of the square-wave. If we 
were to remove the high frequency sine waves (by 
low-pass filtering), then the few low frequency sine 
waves that remain would not be capable of representing 
anything like a square-wave but rather a wobbly 
approximation to one, along with much ripple. Figure 8 
shows the Impulse Responses of two different filter 
designs with different cut-off slopes. It can be seen that 
the design with the faster cut-off slope has Gibbs ripples 
which last for a longer period of time. Note that the 
responses have been separated vertically for clarity. 
Also shown in Figure 8 is the impulse responses for a 
complementary high-pass brick-wall FIR. If we construct 
a crossover filter bank with such a complementary pair 
of filters, the Gibbs ripples are also complementary 
(since we will expect the filters to sum to a flat response 
with linear phase, producing a perfect impulse). The 
summed result will thus be free of any Gibbs ripple, so 
what's the problem? The problem is off-axis. The 
complementary ripples will only cancel if the delay 
suffered by the signal from each driver is identical. 
Off-axis, where the path lengths differ, the ripples will not 
cancel, leading to the possibility that Gibbs ripple might 
become audible (just like a high-Q ringing filter).  
Such summing errors will be more pronounced at higher 
crossover frequencies because the ripples are more 
closely spaced. Lower frequency crossovers will have 
wider ripples which will more easily cancel in the 
presence of off-axis induced delays. 
 
It is evident that steeper cut-off slopes give rise to Gibbs 
ripples of greater duration. It makes sense therefore to 
restrict the cut-off slope to be no more than is necessary 
for the application. 
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Filter Order  
For much of the remainder of this paper, we will 
concentrate on analogue crossover filters, or their digital 
equivalents (including Linear Phase). 
Each 'edge' of a crossover is realised using a filter. This 
filter may be a very simple affair, consisting of nothing 
more than some capacitance and some resistance, or it 
may involve the equivalent of a series of cascaded 
second-order filter sections. In the former case, this is 
said to be a first-order filter, whose magnitude response 
will fall off at 6dB/Octave. In the latter case, we might 
have for example an eighth order filter, whose 
magnitude response might fall off at 48dB/Octave. 
The Order of the filter is effectively the number of 
reactive elements it has in it, or mathematically, how 
many 'poles' it constitutes. As a general rule of thumb, 
the magnitude response will ultimately fall off at (Order X 
6dB/Octave). This is not always the case however. 
Some filters have a more complex shape, making this 
rule difficult to apply. So, although the term 
"24dB/Octave" for example is often used to refer to a 
rank of filter, "4th Order" would be more accurate. 
A high-order filter can be thought of as comprising a 
number of second-order filter sections in cascade. Each 
of these sections may well have a different cut-off 
frequency and Q value (a measure of the amount of 
resonance the filter exhibits). When connected together 
however, they produce the required low-pass (or 
high-pass) response. There are many ways of 
implementing high-order filters, which differ in the 
frequency and Q values used in the individual 
second-order sections, and each has a name (such as 
Butterworth or Linkwitz-Riley). Each of these filter 
shapes, or alignments has its own merits as we will see 
later. 
Before we leave the topic of filter Order however, it is 
worth discussing the region where the low-pass and the 
high-pass filters combine; the Crossover region. Since 
the filters have a finite cut-off slope, the acoustic output 
from the drivers connected to each filter output will 
clearly combine in some way when the signal frequency 
is within the crossover region. Most filter types will cause 
phase shifting of (Order times 45 degrees) at the 
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crossover point. A low-pass filter will create a negative 
phase shift, and a high-pass filter a positive phase shift. 
A 4th order crossover filter pair will thus usually produce 
a -180 degree shift on the low-pass output, and a +180 
degree shift on the high-pass output. The difference is 
360 degrees, which is the same as 0 degrees, so the 
drivers will be in phase. A second order filter pair 
however will cause a phase difference of 180 degrees 
between the drivers. For this reason, it is necessary to 
apply a phase inversion to one of the drivers to correct 
for this. Odd-order alignments will result in a phase 
difference between drivers of 90 degrees which cannot 
be resolved using polarity inversion. 
Odd-order alignments will also exhibit non-ideal polar 
behaviour. The 3rd order Butterworth Polar Response is 
shown in Figure 9. It can be seen that the main lobe is 
not on-axis, but rather points downward, to different 
degrees depending on frequency. This tilting of the polar 
response will cause colouration of the signal, and this 
colouration will depend on the listening position. It is 
interesting to note that the on-axis magnitude response 
is entirely flat and is at 0dB. On-axis therefore, the 
response will be colourless. However, more energy is 
being pumped into the environment off axis than is being 
produced on-axis. This energy has to be delivered by the 
expensive plant you would wish to deliver useful dB 
rather than just exciting the reverberant field. This 
off-axis component, which  varies with frequency, may 
well reflect to listening positions and thus be audible. 
The polar response of the 1st order alignment in Figure 
10 shows similar asymmetry. 
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Fig.9 - 3rd Order Butterworth Polar
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Fig.10 - 1st Order Polar

 

 
Common Filter Types 
Various types of filter are used for crossover filtering in 
professional audio. A given filter type is usually referred 
to as an 'alignment'. The most common crossover 
alignments in use in professional audio are Butterworth, 
Bessel, Linkwitz-Riley, and more recently Hardman. 
Here, we will make some comparisons between these 
alignments. Most of the examples will use a crossover 
frequency of 1kHz and will assume a 4th order alignment 
in each case. We will also introduce a new type of 
crossover filter, Linear Impulse Response (LIR), and 
illustrate this in the comparisons. 
 
Butterworth 
The Butterworth alignment offers what is termed a 
'critically damped' response. That is, when a step is 
applied to its input, the output will attain the same 
voltage as the input in the minimum time possible, but 
without any overshoot. Figure 11 shows the magnitude 
response of a 4th order Butterworth crossover. You will 
notice that there is a peak in the summed magnitude 
response at the crossover point. Figure 12 shows the 
family of magnitude responses for filter order 1 thru 8. 
Order 1 (first order) is a special case in that, although 
technically it meets the criteria of a Butterworth filter, it is 
necessarily a single pole filter whose Q value cannot be 
altered. It is thus not possible for there to be any variants 
of a first order filter. Interestingly, the first order 
crossover is linear phase (in that the group delay is 
entirely flat). Such a crossover rarely finds practical 
application however due to the poor cut-off slope, and 
thus poor protection for HF drivers. 
Butterworth filters are not uncommon in passive 
crossover networks, particularly the 3rd order variant, 
which offers a reasonable compromise between 
complexity and HF driver protection. As discussed 
previously however, odd-order crossovers exhibit an 
asymmetrical polar response. 
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Bessel 
The Bessel alignment is an interesting one, in that the 
intention of Thompson [2], who is usually credited for its 
development, was to create a filter which would produce 
a uniform delay across all frequencies within a certain 
bandwidth limit, rather than to perform a magnitude 
filtering function to attenuate certain frequencies. A side 
effect is that the Bessel filter does remove high 
frequencies (the classic Bessel filter being low-pass in 
nature, but may be transformed to high-pass). We can 
use this side effect to produce a crossover filter with very 
good phase characteristics, because the group delay is 
essentially constant across the bandwidth of the filter. A 
major drawback of the Bessel filter is that the cut-off 
slope is very slow, so it offers poor protection for 
tweeters when used as a crossover. It also droops 
approaching the crossover point, causing a dip in the 
summed magnitude response. 

But, because the Bessel filter is intended for delay 
purposes, the 'design frequency' is not the crossover 
frequency, since the former is the frequency up to which 
the filter holds the delay constant. There is thus not a 
recognised standard way of 'scaling' the low-pass and 
high-pass partners of a Bessel crossover network. 
Various amounts of overlap/underlap are to be found in 
the audio industry, often based on the 3dB point of the 
filters (as shown in Figures 13 and 14), or an overlap 
which produces the best flatness of magnitude response 
(as shown in Figure 15 and 16). Both of these produce a 
poor polar response. A more satisfactory scaling [3] of 
Bessel filters however is that which gives the best polar 
response, but this is seldom seen in the industry. It is in 
fact possible to design a Bessel crossover filter pair 
which produces a perfect polar response, where the 
inter-driver phase is zero degrees at all frequencies, 
producing a main lobe in the polar response which does 
not move away from the on-axis position. Such a design 
is shown in Figures 17 and 18. 
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Fig.14 - Bessel - 3dB scaling
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Fig.15 - Bessel - Best Magnitude scaling
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Fig.16 - Bessel - Best Magnitude scaling
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Fig.18 - Bessel - Best Polar Scaling

 

Linkwitz-Riley 
The Linkwitz-Riley alignment [4] is doubtless the most 
widely used active crossover alignment in the 
professional audio industry. It uses cascaded pairs of 
Butterworth filters in combination to achieve -6dB 
attenuation at the crossover point in each of the 
High-pass and Low-pass filters which achieves a 
summed magnitude response which is completely flat. 
Not only that, the phase response is identical between 
the two filters so that the phase difference between 
adjacent drivers is identical, so the polar response is 
rock-steady, producing a main lobe which is precisely at 
0 degrees. 
Because of the way the constituent Butterworth filters 
are combined, Linkwitz-Riley alignments are all 
even-order. Figure 19 shows the Magnitude response of 
different Orders of Linkwitz-Riley alignment.  
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Hardman  
The Hardman crossover alignment [5] is a relatively new 
alignment which was introduced to the industry by Linear 
Research.. It has most of the benefits of the 
Linkwitz-Riley filter pair, but with significantly increased 
cut-off slope towards the stop-band, with a shape 
sometimes known as "Progressive Slope", because the 
cut-off does not resolve to a straight line, but rather it 
becomes progressively more steep until towards minus 
infinity, it tends towards infinitely steep. Figure 20 
illustrates this for 4th order and 8th order Hardman 
alignments. Note that we have extended the vertical 
scaling on this plot to show the changing slope in the 
stop-bands. 
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The steeper cut-off slope of the Hardman alignment is 
likely to be useful to driver and cabinet designers, often 
allowing the operating bandwidth to be increased since 
the rapid attenuation rate will allow operation 'closer to 
the edge', beyond which might be such perils as cone 
break-up, beaming, resonance or over-excursion. 
Since the Hardman filter achieves steeper cut-off slopes 
for a given filter order, another possibility is that a 
reduced filter order might be used, often thought to 
improve sonic transparency due to the lesser phase 
disturbances. An application normally requiring an 8th 
order crossover, or which would benefit from an 8th 
order crossover if it were not for the sonic drawbacks, 
could often be replaced by a 4th order Hardman 
crossover resulting in improved sonic qualities. 
Alternatively, an application requiring a cut-off slope 
exceeding that of a conventional 8th order crossover 
could be achieved with an 8th order Hardman filter. 
Even though the Hardman filter possesses the feature of 
steep cut-off slope, the phase response is identical to 
that of a Butterworth filter of the same order. This is 
because the pole positions are identical between 
Hardman and Butterworth; it is only the zeros which 
differ.  
It is important to stress that the Hardman filter still 
preserves zero degrees phase shift between drivers at 
all frequencies, just like Linkwitz-Riley. 
The small penalty paid for this functionality is a very 

small ripple in the summed magnitude response (0.8dB 
p-p for 4th order and 1.1dB p-p for 8th order), and a 
slightly reduced cut-off slope far away from the 
crossover point ((Order-1) * 6 dB/Octave rather than 
(Order * 6dB/Octave). However, the transition of slope 
from rapid cut-off to this steeper slope occurs only when 
the attenuation has reached a useful degree (33dB for 
4th order, and 62dB for 8th order). 
Hardman alignments are necessarily even order, the 
minimum being 4th order. Figure 21 shows the individual 
and summed magnitude responses for 4th order and 8th 
order Hardman alignments. 
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Linear Phase – LIR  
Phase linearity is a topic that is becoming ever more 
important to the industry for both practical and sonic 
reasons, some of which are: 
 

• Absence of Group Delay Distortion 
• Preservation of square-wave response 
• Simpler integration of enclosures with differing 

crossover frequencies 
• Simpler design of systems using overlapping 

crossovers 
 
The LIR (Linear Impulse Response) crossover alignment 
[10] is a new alignment to the industry; a major 
development by Linear Research resulting from 
recognition of the shortcomings of other approaches. It 
has all of the benefits of the Linkwitz-Riley filter pair, but 
exhibits linear phase. Unlike many FIR based linear 
phase crossover implementations however, the LIR filter 
has ultra-low latency, and is as simple to use as a 
Linkwitz-Riley crossover. 
Figure 22 shows that the Magnitude Response looks 
very much like that of a Linkwitz-Riley, crossing over at 
-6dB as usual. Being linear phase, the phase responses 
in opposing bands are identical and so the polar 
response is always on-axis. 
The LIR alignment will be compared against other 
alignments later in this paper. A deeper analysis is 
beyond the scope here, but may be found in the 
referenced paper [10]. 
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Summary 
So, which crossover alignment is best? As you might 
have expected, there is no one alignment which is better 
than all others in all respects. They each have their 
merits and drawbacks, and the final selection will 
depend on which of these factors is of most significance 
to the application. 

However, it is useful to compare each of the main 
features for each alignment so that it is possible to place 
each alignment in order of superiority. 
We will make these comparisons for the 4th order case 
of each alignment, showing the traces for each 
alignment on a single graph for each feature, assuming 
a crossover frequency of 1kHz. In each case, the curve 
for alignment (or alignments) which is considered to be 
the best is shown in bold. 
 
Summed Magnitude Response 
We show the summed on-axis magnitude response for 
each of the alignments under consideration in Figure 22. 
We can see that the Linkwitz-Riley and LIR are the only 
alignments which have a completely flat response. The 
Hardman alignment is almost flat, while the other 
alignments suffer either a dip or a peak in the response. 
However, as discussed earlier, this anomaly may be 
easily rectified using equalisation. 
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Polar Response 
When properly designed, all of the 4th order alignments 
discussed in this paper will exhibit polar behaviour which 
puts the main lobe precisely on-axis, which does not 
move with changing frequency.  
 
If the Bessel filter pair are properly designed (to have 
identical phase characteristics between the high and low 
pass filters), then there is nothing to choose between the 
various even order alignments in terms of polar 
response. As discussed previously however (in the 
Bessel section), if Bessel crossover designed for a -3dB 
crossover point, or is designed for the flattest summed 
magnitude response, then the polar response will be 
poor. 
 
As discussed in the Filter Order section above, odd 
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order alignments will exhibit non-ideal polar behaviour. 
In this paper the only odd-order alignments we have 
considered are 1st order and 3rd order Butterworth. 
These may therefore be thought of as the poorest in 
terms of polar response 
The polar response of all the even-order Butterworth 
crossovers is perfectly symmetrical however. 
 
 
Attenuation Slope 
Figure 24 shows how rapidly the high-pass filter of each 
crossover alignment attenuates as the signal frequency 
falls below the crossover frequency. On the face of it, it 
would appear that The Linkwitz-Riley and LIR 
alignments offers a superior initial roll-off than the 
Butterworth, and that the Bessel alignment offers 
generally better attenuation characteristics than 
Linkwitz-Riley and Butterworth. 
However, if we apply some equalisation to flatten the 
summed magnitude response of the Butterworth and 
Bessel alignments (the others being largely flat anyway) 
we see in Figure 25 that Butterworth, Bessel, 
Linkwitz-Riley and LIR become identical in their 
attenuation characteristics. We also see clearly the 
superior initial attenuation slope offered by the Hardman 
alignment, which becomes less effective further away 
from the crossover point, but only where the degree of 
attenuation has reduced the signal to insignificant levels. 
 
We also show the attenuation slope of an 8th order 
Linkwitz-Riley alignment to illustrate that the 4th order 
Hardman alignment offers almost the same attenuation 
performance. 
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Phase Response  
The phase response itself is not particularly revealing, as 
shown in Figure 26 for the various alignments. However, 
we can see that only the LIR alignment exhibits linear 
phase (shown here with the latency delay removed).  
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The problem is that much of the phase shift is due to 
linear phase shifting, which equates to pure delay, which 
we know is not audible. Figure 27 shows the Group 
Delay of the various alignments. This is a little more 
revealing, but does it truly give us an indication of the 
audibility of phase shifting artefacts? 
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Instead, we will compare the phase anomalies of the 
various alignments using Differential Time Delay 
Distortion (DTDD). 
Time delay distortion [6] is defined as the difference 
between the phase delay and the group delay, and is an 
indication of how much phase shift the signal suffers 
beyond that of a linear phase shift, i.e. beyond that of a 
perfect delay constant at all frequencies. We use it here 
to try to bring some quantitative measure to the likely 
audibility of non-linear phase shifting. An ideal DTDD 
would be a flat line, which is what a linear phase process 
would produce. The more severe the kinks in the DTDD 
plot, the more audible the phase shift is likely to be. 
As regards the threshold of audibility, this remains in 
debate. Studies [7] and [8] have generally found the 
audibility threshold to be at least 1ms over a reasonable 
range of frequencies. 
Figure 28. shows the DTDD for the various alignments at 
1kHz crossover frequency. 
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It would appear that the Butterworth and the Hardman 
alignments have the least flat DTDD, while the Bessel 
and LIR alignments have the flattest DTDD. We find 
however that if we apply minimum-phase equalisation to 
flatten the magnitude responses of the Butterworth, 
Bessel and Hardman alignments, as shown in Figure 29, 
the resulting DTDD responses change things somewhat. 
We now find that all alignments are almost identical 
(except LIR which remains entirely flat). If we were to 
use linear phase equalisation, then the results would 
remain as in 28. However, any 'system' equalisation 
applied to flatten the overall response is likely to be 
conventional minimum phase, so the results presented 
in Figure 29 are more likely. 
Of importance here is that although we are showing that 
the DTDD does not in the end vary too much with the 
type of alignment, the Order does make a significant 
difference. We show the DTDD of the 8th Order 
Linkwitz-Riley alignment, which is well on its way 
towards the threshold of audibility, which one could 
easily imagine might be audible under some 
circumstances. Indeed, there is anecdotal evidence that 
the 8th Order Linkwitz-Riley alignment is avoided 
because of it's 'hard' sound. Perhaps this is due to the 
higher DTDD? 
Critically, it must be noted that the Group Delay and 
DTDD plots shown here are for a 1kHz crossover point. 
These figures are inversely proportional to the crossover 
frequency, so the 4th order Linkwitz-Riley alignment for 
example will exceed the 1ms audibility threshold at 
crossover frequencies below about 430Hz. However, 
studies such as [9] show that this threshold of phase 
audibility increases below about 800Hz, making phase 
linearity less important at very low crossover 
frequencies. This suggests that the audibility of DTDD in 
a 4th Order Linkwitz-Riley crossover with crossover 
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frequencies much below perhaps 200Hz might not be 
significant, so there may be no benefit from the 
additional latency delay that a Linear Phase crossover 
would introduce. However, an 8th Order Linkwitz-Riley 
crossover might have audible phase artefacts at 
crossover frequencies below 860Hz, and may remain 
audible even at much lower crossover frequencies. 
 It is certainly safe to assume that the lower the DTDD, 
the better, and that being the case, the best way towards 
that goal is to use LIR or otherwise a low Order 
alignment as possible. 
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Conclusions 
We have discussed the differences between analogue 
filter designs (or their IIR digital equivalents) and Linear 
Phase LIR/FIR filters and concluded that each have their 
place and can be deployed successfully if sufficient care 
is applied to their design, and that their relative merits 
are properly considered for the application. We have 
seen that until recently, neither fast attenuation slopes 
nor linear phase filtering were the panacea they seemed 
to be, and that the traditional crossover types were still 
sometimes hard to beat. However, recent advances in 
Linear Phase technology have closed this gap, making 
the LIR alignment a natural choice since it combines the 
very desirable Linear Phase characteristic with low 
latency and ease of use. 
Although all the alignments have their own unique 
advantages (otherwise they would not still be in use 
today), it has to be said that some are perhaps 
irrelevant. We have shown that if some kind of system 
equalisation is applied, many of the differences between 
the alignments disappear. Whilst it should be said that 
the Bessel alignment is only of any use whatsoever if it 
is phase matched, it appears to have no benefit if the 
magnitude response of the system is flattened since the 
appealing smooth group delay characteristics of the 
Bessel alignment disappears. The Butterworth alignment 
seems to have little to offer, and has a peak in the 
magnitude response which will usually have to be 
equalised out somewhere in the system. Linkwitz-Riley 
remains very attractive in all respects apart from not 
being linear phase. Where better discrimination between 
bands is required however, the Hardman alignment 
offers superior performance without sacrificing phase 
response, and will be preferred to a higher order 
Linkwitz-Riley alignment. If a small latency delay can be 
tolerated, then it is clear that the LIR alignment will be 
the preferred choice, especially for crossovers in the 
critical range of a few hundred Hertz. 
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